پێرستی تەواوکاری نەخشە ڕێژەییەکان
لە testwiki
بۆ ڕێدۆزی بازبدە
بۆ گەڕان بازبدە
تەواوکاری نەخشە ڕێژەییەکان لە
بیرکاریدا
:
∫
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(for
n
≠
−
1
)
∫
c
a
x
+
b
d
x
=
c
a
ln
|
a
x
+
b
|
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(for
n
∉
{
−
1
,
−
2
}
)
∫
x
a
x
+
b
d
x
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
∫
x
(
a
x
+
b
)
2
d
x
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(for
n
∉
{
1
,
2
}
)
∫
x
2
a
x
+
b
d
x
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
∫
x
2
(
a
x
+
b
)
2
d
x
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
∫
x
2
(
a
x
+
b
)
3
d
x
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
∫
x
2
(
a
x
+
b
)
n
d
x
=
1
a
3
(
−
(
a
x
+
b
)
3
−
n
(
n
−
3
)
+
2
b
(
a
+
b
)
2
−
n
(
n
−
2
)
−
b
2
(
a
x
+
b
)
1
−
n
(
n
−
1
)
)
(for
n
∉
{
1
,
2
,
3
}
)
∫
1
x
(
a
x
+
b
)
d
x
=
−
1
b
ln
|
a
x
+
b
x
|
∫
1
x
2
(
a
x
+
b
)
d
x
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
∫
1
x
2
(
a
x
+
b
)
2
d
x
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
∫
1
x
2
+
a
2
d
x
=
1
a
arctan
x
a
∫
1
x
2
−
a
2
d
x
=
−
1
a
a
r
c
t
a
n
h
x
a
=
1
2
a
ln
a
−
x
a
+
x
(for
|
x
|
<
|
a
|
)
−
1
a
a
r
c
c
o
t
h
x
a
=
1
2
a
ln
x
−
a
x
+
a
(for
|
x
|
>
|
a
|
)
for
a
≠
0
:
∫
1
a
x
2
+
b
x
+
c
d
x
=
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
−
2
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(for
4
a
c
−
b
2
<
0
)
−
2
2
a
x
+
b
(for
4
a
c
−
b
2
=
0
)
∫
x
a
x
2
+
b
x
+
c
d
x
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
(for
4
a
c
−
b
2
<
0
)
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
(
2
a
x
+
b
)
(for
4
a
c
−
b
2
=
0
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
d
x
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
∫
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
∫
1
x
(
a
x
2
+
b
x
+
c
)
d
x
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
1
a
x
2
+
b
x
+
c
d
x
∫
d
x
x
2
n
+
1
=
∑
k
=
1
2
n
−
1
{
1
2
n
−
1
[
sin
(
(
2
k
−
1
)
π
2
n
)
arctan
[
(
x
−
cos
(
(
2
k
−
1
)
π
2
n
)
)
csc
(
(
2
k
−
1
)
π
2
n
)
]
]
−
1
2
n
[
cos
(
(
2
k
−
1
)
π
2
n
)
ln
|
x
2
−
2
x
cos
(
(
2
k
−
1
)
π
2
n
)
+
1
|
]
}
داڕێژە:تووڵی دەروازە
مێنۆی ڕێدۆزی
ئامڕازە تاکەکەسییەکان
بچۆ ژوورەوە
شوێنناوەکان
پەڕە
وتووێژ
کوردی
بینینەکان
خوێندنەوە
سەرچاوەکەی ببینە
مێژوو
زیاتر
گەڕان
ڕێدۆزی
دەستپێک
دوایین گۆڕانکارییەکان
پەڕەی ھەڕەمەکی
یارمەتی دەربارەی میدیاویکی
پەڕە تایبەتەکان
ئامرازەکان
بەستەرەکان بە ئێرەوە
گۆڕانکارییە پەیوەندیدارەکان
وەشانی ئامادەی چاپ
بەستەری ھەمیشەیی
زانیاریی پەڕە
ئەم پەڕەیە بکە بە ژێدەر