تیۆرمی پیتاگۆرس

لە testwiki
بۆ ڕێدۆزی بازبدە بۆ گەڕان بازبدە

داڕێژە:داتابۆکسداڕێژە:سێگۆشەزانی

پەڕگە:Pythagorean.svg
بەپێی تیۆرمی پیتاگۆرس، ئەنجامی کۆکردنەوەی ڕووبەری دوو چوارگۆشەی سەر دوو لای گۆشەوەستاوی (a وb)یەکسانە بە ڕووبەری چوارگۆشەی سەر لای ژێ (c).
هەڵە کاتی درووست‌کردنی هێما:

تیۆرمی پیتاگۆرس یان سەلمێنراوی پیتاگۆرس (داڕێژە:بە ئینگلیزی) لە زانستی ئەندازە و بۆشاییی ئیقلیدسیدا بەشێکە لە ڕێسای گشتی یاسای کۆساینەکان، لەکاتێکدا کە گۆشەی نێوان دوو لا لە لایەکانی سێگۆشەیەک ٩٠ پلەیە. پیتاگۆرس بیرکاریزانی یۆنانی بەو تیۆرمە ناوبانگی دەرکرد کە ھەر سێ لایەکانی سێگۆشەی وەستاو بەیەکەوە دەبەستێت، واتە ئەگەر a و b دوو لای سێگۆشەیەکی وەستاو بێت و c ژێیەکەی بێت تیۆرمی پیتاگۆرس بەم شێوەیە: داڕێژە:Ltr

a2+b2=c2 

داڕێژە:Ltr/end ئەمەش مانای ئەوەیە کە دووجای ژێ یەکسانە بە سەرجەمی دووجای دوو لایەکەی تر.

یاسای کۆساینەکان دەڵێت کە ئەگەر a و b دوو ئاڕاستەبڕ (یا ھێڵ) بن کە لە سەری O گۆشەی A پێک بێنن، ھاوکێشەی a2+b22abCosA=c2 پاسادانە.

ھەر کات گۆشەی A نەوەد پلە بێت، ئەنجامی 2abcosA سیفر دەکات و بە دانانی بەھاکەی ھەروەک دیارە پەیوەندی پیتاگۆرس بە شێوەی a2+b2=c2  بەدەست دێت. ئیقلیدس پێچەوانەی تیۆرمی پیتاگۆرسی سەلماند، واتە ئەگەر درێژی لایەکانی سێگۆشەیەک ھاوکێشەی a2+b2=c2  ساغبکاتەوە، سێگۆشەکە وەستاوە.[١]

شێوەکانی تر

  • ئەگەر c درێژایی ژێی سێگۆشەی وەستاو بێت و a و b درێژایی دوو لای تری سێگۆشەکە بن، تیۆرمی پیتاگۆرس بە شێوەی خوارەوە دەنووسرێت:

داڕێژە:Ltr

a2+b2=c2 

داڕێژە:Ltr/end

  • ئەگەر بەھای a و b زانراو بێت c بە شێوەی خوارەوە ھەژمار دەکرێت:

داڕێژە:Ltr

c=a2+b2

داڕێژە:Ltr/end

  • ئەگەر c زانراو و یەکەک لە دوو لای a یا b نەزانراو بن، بەم شێوە ھەژمار دەکرێن:

داڕێژە:Ltr

a=c2b2

یان

b=c2a2

داڕێژە:Ltr/end

سەلماندن

بیرکاریزانەکان گرینگی زۆریان داوە بە تیۆرمی پیتاگۆرس و سەلماندنی جۆراوجۆریان لەسەر پێشکەش کردووە. لە کتێبی پێشنیاری پیتاگۆرس (داڕێژە:بە ئینگلیزی) نیزیک بە ٣٧٠ سەلماندن بۆ تیۆرمی پیتاگۆرس خراوەتە ڕوو.[٢]

سەلماندنی دانتزیگ

سەلماندن بە گوێرەی ھاوشێوەیی سێگۆشەکان

ئەم سەلماندنە بە پشتبەستن بە ڕێژەی ھاوڕێژەیی نێوان دوو سێگۆشەی لێکچوو شرۆڤە دەکرێت. بەو واتایە ئەگەر دوو سێگۆشەی لێکچوومان ھەبێت، ڕێژەی درێژایی دوو لای ھاوشێوەی دوو سێگۆشەی لێکچوو بەھایەکی نەگۆڕە. ھەر وەک لە وێنەی بەرامبەر ڕوون کراوەتەوە، وا دابنێ ABCسێگۆشەی وەستاو و C گۆشەوەستاو (٩٠ پلە) بێت. بەرزی سێگۆشەی ABC لە گۆشەی C تا ژێی AB دەکێشینەوە و خاڵی یەکتربڕین بەH دیاری دەکەین. خاڵی H ژێ بە دوو بەشی d و e دابەش دەکات. دوو سێگۆشەی ACH و ABC لە یەک دەچن. لەبەر ئەوەی ھەر یەکەی گۆشەیەکی ٩٠ پلەیییان ھەیە و لە گۆشەی Aدا ھاوبەشن؛ بەو دەرئەنجامە دەگەین گۆشەی سێھەمی θ لە ھەردووکاندا یەکسانە (لە وێنەی بەرامبەر ڕوون کراوەتەوە). ھەر بەم شێوەیە سێگۆشەی CBH و ABC لە یەک دەچن. کەوایە پەیوەندییەکانی خوارەوە دێتەدی. داڕێژە:Ltr

ac=ea and bc=db

داڕێژە:Ltr/end ڕێژەی لای چەپی ھاوکێشەی چەپ، یەکسانە بە کۆساینی گۆشەی θ و ڕێژەی لای چەپی ھاوکێشەی لای ڕاست یەکسانە بە ساینی گۆشەی θ. ئەمە بە شێوەی خوارەوە دەنووسین: داڕێژە:Ltr

a2=c×e و b2=c×d

داڕێژە:Ltr/end ئەگەر دوو ھاوکێشەی سەرەوە کۆ بکەینەوە، پەیوەندی خوارەوە دێتەدی: داڕێژە:Ltr

a2+b2=c×e+c×d=c×(d+e)=c2

داڕێژە:Ltr/end ئەوە ھەمان ھاوکێشەی پیتاگۆرسە: داڕێژە:Ltr

a2+b2=c2

داڕێژە:Ltr/end ئەم شێوە سەلماندنە بە سەلماندنی دانتزیگ (Dantzig) دەناسرێت، کە بە گوێرەی درێژایییە. ئەم سەلمێنراوە لە مێژووی زانستدا ڕۆڵێکی گرینگی ھەیە. پرسیارێک کە لێرە دێتە ئاراوە ئەمەیە کە بۆ ئیقلیدس ئەم شێوە سەلماندنەی بەکار نەھێناوە و لە ڕێگەیەکی تر بۆی چووە. پێویستە بزانین، لە شێوەی سەلماندنی دانتزیگدا دەبێت ئاگاداری بیردۆزی ھاوڕێژەیی ببین کە ئەوە لە سەردەمی ئیقلیدس باسی لەسەر نەکرابوو.[٣][٤]

سەلماندنی ئیقلیدس

پەڕگە:Illustration to Euclid's proof of the Pythagorean theorem.svg
سەلماندنی تیۆرمی پیتاگۆرس لە کتێبی بنەمەکانی ئیقلیدس

کورتەیەک لە سەلماندنی تیۆرمی پیتاگۆرس لە کتێبی بنەماکانی ئەندازەی ئیقلیدس: چوارگۆشە گەورەکە بە دوو لاکێشەی لای چەپ و ڕاست دابەش دەکەین. سێگۆشەیەک دروست دەبێت کە ڕووبەرەکەی نیوەی ڕووبەری لاکێشەی لای چەپە. سێگۆشەیەکی تریش پێکدێت کە ڕووبەرەکەی نیوەی ڕووبەری چوارگۆشەی لای چەپە. دەتوانین بسەلمێنین ئەم دوو سێگۆشەیە جووتن. کەواتە ڕووبەری چوارگۆشە یەکسانە بە ڕووبەری لاکێشەی لای چەپ. بە ھەمان شێوە، دەرئەنجامەکە بۆ لاکێشەی لای ڕاست و چوارگۆشەکەی تریش بەدەست دێت. ئەگەر دوو لاکێشەکە لە پەنای یەک دانێین تا چوارگۆشەیەک لەسەر ژێی سێگۆشە دروست بێت، ئەمە دەردەکەوێت کە ڕووبەری چوارگۆشە گەورەکە (چوارگۆشەی سەر ژێ)یەکسانە بە ئەنجامی کۆکردنەوەی ڕووبەری دوو چوارگۆشەی تر. وردەکارییەکانی سەلماندنی ئیقلیدس:

وا دابنێ A و B و C سێ گۆشە لە سێگۆشەیەکی وەستاو بن کە پێوانەی گۆشەی A، نەوەد پلەیە. ھێڵێکی ئەستوون لە گۆشەی A بەسەر ژێی BC دەکێشینەوە و درێژەی پێ دەدەین تا لای خوارەوەی چوارگۆشەی کێشراوەی سەر ژێ ببڕێت. ئەو ھێڵە چوارگۆشەی سەر ژێیەکە بە دوو لاکێشە دابەش دەکات، کە ھەر یەک لە لاکێشەکان ڕووبەری یەکسان بە ڕووبەری چوارگۆشەکانی کێشراوە لەسەر دوو لای گۆشەی Aی ھەیە.

لە درێژەی سەلماندنەکە چەن خاڵی خوارەوە گرینگە:

  1. ھەرکات دوو لای سێگۆشەیەک یەکسان بێت بە دوو لای سێگۆشەیەکی تر و گۆشەی نێوان ئەم دوو لایە لە سێگۆشەکە یەکسان بن، ئەوا دوو سێگۆشەکە یەکسان دەبن.
  2. ڕووبەری ھەر سێگۆشەیەک نیوەی ڕووبەری چوارلایەکە کە لایەکانی دوو بە دوو لەگەڵ یەک ھاوبەرن و بەرزی و بەنکەی یەکسان بە بەرزی و بنکەی سێگۆشەی ھەیە.
  3. ڕووبەری لاکێشەیەک یەکسانە بە ئەنجامی لێکدانی دوو لای تەنیشتی لاکێشەکە.
  4. ھەر یەک لە دوو چوارگۆشەی سەرەوە پەیوەندی ھەیە بە یەکێک لە دوو سێگۆشە جووتبووەکە و ھەر یەک لە سێگۆشەکان بە نۆبەی خۆیان پەیوەندیان ھەیە لەگەڵ یەکێک لە لاکێشەکانی دروستکەری چوارگۆشە.[٥]

داڕێژە:-

پەڕگە:Illustration to Euclid's proof of the Pythagorean theorem2.svg
.

درێژەی بابەت

  1. وا دابنێ سێگۆشەی ABC وەستاو بێت کە پێوانەی گۆشەی CAB لەو سێگۆشەیە ٩٠ پلەیە.
  2. لەسەر ھەر یەک لە لایەکانی BC و AB و CA، چوارگۆشەکانی CBDE و BAGF و ACIH کێشراوەتەوە.
  3. لە گۆشەی A ھێڵێک ھاوبەرەی BD و CE دەکێشینەوە؛ ئەو ھێڵە ئەستوونە لەسەر BC و DE، یەکتربڕینی ئەو ھێڵانە بە K و L دیاری دەکەین.
  4. سەری گۆشەی C درێژە دەدەین تا F و سەری A دەگەیێنین بە D تا سێگۆشەی BCF و BDA دروست بن.
  5. گۆشەکانی CAB و BAG وەستاون، دەگەینە ئەو دەرئەنجامە کە خاڵەکانی C و A و G لەسەر یەک ھێڵن. بە ھەمان شێوە دەرئەنجامەکە بۆ خاڵەکانی B و A و H دەردەکەوێت.
  6. گۆشەی CBD و FBA وەستاون. بەو ئەنجامە دەگەین دوو گۆشەی ABD و FBC یەکسانن لەبەر ئەوەی ھەردووک یەکسانن بە ئەنجامی کۆکردنەوەی گۆشەیەکی ٩٠ پلەیی و گۆشەی ABC.
  7. AB لەگەڵ FB و BD لەگەڵ BC یەکسانن؛ بەو ئەنجامە دەگەین سێگۆشەی ABD لەگەڵ سێگۆشەی FBC یەکسانە.
  8. A-K-L ڕاستەھێڵێکی ھاوبەرە لەگەڵ BD؛ کەواتە BDLK چوارلایەیە بە لایەکانی دوو بە دوو ھاوبەرە و ڕووبەرەکەی دوو ئەوەندەی ڕووبەری سێگۆشەی ABD یە؛ لەبەر ئەوەی بنکەی بەرزی BD ھاوبەشە لە ھەردووکیاندا و بەرزی ھەردووکیان درێژایییەکەی یەکسانە بە BK.
  9. لەبەر ئەوەی خاڵی C و دوو خاڵی A و G ھەر سێک لەسەر یەک ھێڵن، کەواتە دەبێ چوارگۆشەی BAGF ڕووبەری دوو ئەوەندەی ڕووبەری سێگۆشەی FBCی ببێت.
  10. دەتوانین بەو ئەنجامە بگەین ڕووبەری لاکێشەی BDLK و چوارگۆشەی BAGF یەکسانن و ئەندازەیان یەکسانە بە AB٢.
  11. بە ھەمان شێوە دەتوانین بسەلمێنین لاکێشەی CKLE ڕووبەرەرەکەی یەکسانە بە ڕووبەری چوارگۆشەی ACIH و دەکاتە AC٢.
  12. بە کۆکردنەوەی ئەو دوو ئەنجامە لەگەڵ یەک ھاوکێشەی AB٢ + AC٢ = BD × BK + KL × KC
  13. لەبەر ئەوەی BD = KL و BD* BK + KL × KC = BD(BK + KC) = BD × BC
  14. لەبەر ئەوەی CBDE یەک چوارگۆشەیە کەواتە AB٢ + AC٢ = BC٢

ئەو سەلماندنە لە کتێبی بنەماکانی ئیقلیدس، لە دەسپێکی پێشنیاری ٤٧ لە کتێبی ١ ھاتووە[٦] و ئەوە دەردەخات کە ئەنجامی کۆکردنەوەی ڕووبەری دوو چوارگۆشەی سەر دوو لای گۆشەی وەستاو یەکسانە بە ڕووبەری چوارگۆشەی سەر لای ژێ.[٧] سەلماندنی ئیقلیدس، بە پێچەوانەی سەلماندنی دانتزیگ سەلماندنێکە بە شێوەی ڕووبەری نە درێژایی. ئەو شێوە سەلماندنە جیاوازە لەگەڵ سەلماندنی پیتاگۆرس کە بە گوێرەی لێکچوونی سێگۆشەکانە.[٤][٨]

سەلماندنی جەبری

هەڵە کاتی درووست‌کردنی هێما:
وێنەی سەلماندنی جەبری.

تیۆرمی پیتاگۆرس دەتوانرێت بە ڕیزکردنی چوار سێگۆشەی گۆشەوەستاوی یەکسان بە لاکانی a و b و c لە ناو چوارگۆشەیەکدا کە لاکانی c یە بە شێوەی جەبری بسەلمێنرێت.[٩]

سێگۆشەکان یەکسانن و ڕووبەرەکەیان یەکسانە بە 12ab چوارگۆشە بچووکەکە لایەکی یەکسانە بە b-a و ڕووبەرەکەی ٢ (b−a)یە کەوایە ڕووبەری چوارگۆشە گەورەکە یەکسانە بە داڕێژە:Ltr

(ba)2+4ab2=(ba)2+2ab=a2+b2

داڕێژە:Ltr/end لاکانی چوارگۆشە سەرەکییەکە یەکسانە بە c و ڕووبەرەکەی دەکاتە ٢ c و دەرئەنجامی خوارەوە بەدەست دێت: داڕێژە:Ltr

c2=a2+b2

داڕێژە:Ltr/end ھەر وەک لە خوارەوەی وێنەکە دیارە، سەلماندنێکی تر ھەیە کە بە کەڵک وەرگرتن لە دانانی چوار سێگۆشەی یەکسان بە دەوری چوارگۆشەیەک کە لاکانی cیە بە ئەنجام دەگات.[١٠] بەو کارە چوارگۆشەیەکی گەورەتر بە لای (a+b) و ڕووبەری ٢ (a+b) بەدەست دێت. چوار سێگۆشە و چوارگۆشەکە بە لای یەکسان بە c ڕووبەری یەکسان بە ڕووبەری چوارگۆشە گەورەکەی ھەیە. داڕێژە:Ltr

(b+a)2=c2+4ab2=c2+2ab

داڕێژە:Ltr/end لای چەپی ھاوکێشە جێبەجێ دەکەین ئەنجامی خوارەوە بەدەست دێت داڕێژە:Ltr

c2=(b+a)22ab=a2+b2

داڕێژە:Ltr/end

سەلماندن بە شێوەی جیاکاری

یەکێکی تر لە ڕێگاکانی سەلماندنی پیتاگۆرس کەڵکوەرگرتن لە ھەژماری جیاکاری و تەواوکارییە واتە دەمانەوێت بزانین بە گۆڕینی درێژایی یەکێک لە لاکانی سێگۆشەکە، درێژایی ژێ چەندە دەگۆڕێت.[١١][١٢] ئەو شێوە سەلماندنە لە سەلماندنی دانتزیگ دەچێت، واتە درێژایی دەپێوی نەک ڕووبەر.

سەلماندن بە شێوەی ڕیزکردن

لە وێنەی جووڵاوی لای ڕاستدا، ناوچە سەرەکییەکەی بە ڕەنگی ڕەش دیاری کراوە و درێژی لاکەی c یە دەتوانین دابەش بکەین بە دوو چوارگۆشە کە لاکانیان بە a و b دیاری کراوە و ئەم ھاوکێشە ساغدەکاتەوە: داڕێژە:Nowrap داڕێژە:چینی ناوەند

پەڕگە:Pythag anim.gif
سەلماندن لە ڕێگەی ڕیزکردنەوەی چوار سێگۆشەی وەستاوی یەکسان
هەڵە کاتی درووست‌کردنی هێما:
ئەنیمەیشنی سەلماندن لە ڕێگەیەکی جیاواز[١٣]
هەڵە کاتی درووست‌کردنی هێما:

داڕێژە:کۆتایی

پێچەوانەی تیۆرمی پیتاگۆرس

دەتوانین پێچەوانەی تیۆرمی پیتاگۆرس بسەلمێنین.[١٤]

ئەگەر درێژی لایەکانی سێگۆشەیەک واتە a و b و c ھاوکێشەی داڕێژە:Nowrap ساغبکاتەوە، ئەوا سێگۆشەکە وەستاوە.

لە کتێبی بنەماکانی ئیقلیدس (کتێبی یەکەم، پێشنیاری ٤٨)[١٥]

بە واتایەکی تر ئەگەر درێژی ھەر سێ لای a و b و c لە سێگۆشەیەک ھاوکێشەی داڕێژە:Nowrap پاسادان بکات ئەوا گۆشەی نێوان لاکانی a و b نەوەد پلەیە.

ھەر کات دووجای یەکێک لە لاکانی سێگۆشەیەک یەکسان بێت بە ئەنجامی کۆکردنەوەی دووجای دوو لای تری سێگۆشە ئەوا گۆشەی نێوان ئەو دوو لایەی سێگۆشەکە وەستاوە.

بە گوێرەی یاسای کۆساینەکان دەتوانین پێچەوانەی تیۆرمی پیتاگۆرس شیکاری بکەین.

بەکارھێنان و ئەنجامەکان

ژمارە پیتاگۆرسییەکان

داڕێژە:سەرەکی

پەڕگە:Spiral of Theodorus.svg
لوولپێچی پیتاگۆرس

ژمارەی پیتاگۆرسی یان سیانەی پیتاگۆرسی بەو سێ ژمارە دەوترێت کە ئەنجامی کۆکردنەوەی دووجای دوو دانەیان یەکسانە بە دووجای سێھەمی، بە دەستەواژەیەکی تر سێ ژمارەی a و b و c ژمارەی پیتاگۆرسین ھەرکات پاسادانی ئەم ھاوکێشە:a٢ + b٢ = c٢ بکەن. سێ ژمارەی پیتاگۆرسی لاکانی سێگۆشەیەکی وەستاو دروست دەکەن. بەپێی لێکۆڵینەوەکان وا دەرکەوتووە دانیشتووانی باکووری ئەورووپا بەرلەوەی تیۆرمی پیتاگۆرس بناسن، ئەو ژمارانەیان بۆ پێکھێنانی بەناکانیان بەکار ھێناوە. نموونەیەک لەو ژمارانەی زۆر بەکار ھاتوون بریتین لە (٣، ٤، ٥) و (٥، ١٢، ١٣). لە خوارەوە ژمارە پیتاگۆرسییەکانی بچووکتر لە ١٠٠ پێرست کراون.

(٣، ٤، ٥)، (٦٬٨٬١٠)، (٥، ١٢، ١٣)، (٧، ٢٤، ٢٥)، (٨، ١٥، ١٧)، (٩، ٤٠، ٤١)، (١١، ٦٠، ٦١)، (١٢، ٣٥، ٣٧)، (١٣، ٨٤، ٨٥)، (١٦، ٦٣، ٦٥)، (٢٠، ٢١، ٢٩)، (٢٨، ٤٥، ٥٣)، (٣٣، ٥٦، ٦٥)، (٣٦، ٧٧، ٨٥)، (٣٩، ٨٠، ٨٩)، (٤٨، ٥٥، ٧٣)، (٦٥، ٧٢، ٩٧)، (١٦٩٬١٢٠٬١١٩)

دووریی ئیقلیدسی

ھاوکێشەی دووری لە سیستمی پۆتانی دێکارتیدا لە تیۆرمیی پیتاگۆرسەوە سەرچاوە دەگرێت.[١٦] ئەگەر (x1, y1) و (x2, y2) دوو خاڵی سەر ڕووتەختێک بن، دووریی نێوانیان کە دووریی ئیقلیدسی پێ دەوترێت، بەم شێوەیە ھەژمار دەکرێت: داڕێژە:Ltr (x1x2)2+(y1y2)2. داڕێژە:Ltr/end

بە گشتی لە بۆشاییی ئیقلیدسی n ڕەھەندیدا، دووریی نێوان دوو خاڵی، A=(a1,a2,,an) و B=(b1,b2,,bn) لە گشتاندنی تیۆرمیی پیتاگۆرسەوە بەدەست دێت و بەم شێوەیە پێناسە دەکرێت: داڕێژە:Ltr (a1b1)2+(a2b2)2++(anbn)2=i=1n(aibi)2. داڕێژە:Ltr/end دووجای دووریی ئیقلیدسی، بریتییە لە: داڕێژە:Ltr (a1b1)2+(a2b2)2++(anbn)2=i=1n(aibi)2. داڕێژە:Ltr/end

ژمارە ئاوێتەکان

هەڵە کاتی درووست‌کردنی هێما:
نرخی ڕەھای z دووریی r لە z تا خاڵی بنەڕەتە.

بۆ ھەر ژمارەیەکی ئاوێتە وەکوو داڕێژە:Ltr z=x+iy, داڕێژە:Ltr/end نرخی ڕەھاکەی بەم شێوەیە: داڕێژە:Ltr r=|z|=x2+y2. داڕێژە:Ltr/end کەواتە سێ بەھای x ,r و y بە بەکارھێنانی تیۆرمی پیتاگۆرس بەیەکەوە دەبەسترێنەوە: داڕێژە:Ltr r2=x2+y2. داڕێژە:Ltr/end لێرەدا r بریتییە لە ژمارەیەکی ئەرێنی یان سیفر، بەڵام x و y دەتوانن نەرێنی یا ئەرێنی بن یا خود سیفر بن. لە ڕوانگەی ئەندازەیییەوە، r بریتییە لە دووریی z لە خاڵی بنەڕەت لە ڕووتەختی ئاوێتەدا. ئەمە دەتوانرێت بەم شێوەیە بگشتێنرێت، تاکوو دووریی نێوان دوو خاڵی z1 و z2 بدۆزرێتەوە. ئەم دوورییە بەم شێوەیە ھەژمار دەکرێت داڕێژە:Ltr |z1z2|=(x1x2)2+(y1y2)2, داڕێژە:Ltr/end بە بەکارھێنانی تیۆرمی پیتاگۆرس لەمەوە دەردەچێت: داڕێژە:Ltr

|z1z2|2=(x1x2)2+(y1y2)2 داڕێژە:Ltr/end

بۆچوونی ماتماتیکزانان سەبارەت بە تیۆرمی پیتاگۆرس

یۆھانس کێپلەر دەڵێت ئەندازە خاوەنی دوو گەنجی گەورەیە یەکیان تیۆرمی پیتاگۆرسە، ئەوەی تریان دابەشکردنی ھێڵێک بە ناکۆتا ڕێژەی ناوەندی. یەکەمینیان لەگەڵ زێڕ بەراورد دەکرێت و دووھەمینیان گەوھەرێکی بەنرخە.[١٧]

پێشانگا

سەرچاوەکان

داڕێژە:سەرچاوەکان

داڕێژە:پۆلی کۆمنز

داڕێژە:تووڵی دەروازە

  1. Carl B. Boyer, A history of mathematics, page 108, 1991
  2. داڕێژە:Harv
  3. داڕێژە:Harv http://books.google.com/books?id=Z5VoBGy3AoAC&pg=PA39&dq=
  4. ٤٫٠ ٤٫١ داڕێژە:بیرخستنەوەی کتێب
  5. See for example Mike May S.J. , Pythagorean theorem by shear mapping داڕێژە:Webarchive, Saint Louis University website Java applet
  6. Elements 1.47 by Euclid. Retrieved 19 December 2006.
  7. Euclid's Elements, Book I, Proposition 47: web page version using Java applets from Euclid's Elements by Prof. David E. Joyce, Clark University
  8. The proof by Pythagoras probably was not a general one, as the theory of proportions was developed only two centuries after Pythagoras; see داڕێژە:Harv page 25
  9. داڕێژە:بیرخستنەوەی وێب
  10. داڕێژە:بیرخستنەوەی وێب
  11. داڕێژە:بیرخستنەوەی ژوورناڵ (An abbreviated version of this proof is in the second half of Proof #40 داڕێژە:Webarchive at داڕێژە:بیرخستنەوەی وێب Archived version May 8, 2010. داڕێژە:Webarchive)
  12. Proof #40 داڕێژە:Webarchive also summarizes a differential proof by Michael Hardy: "Pythagoras Made Difficult". Mathematical Intelligencer, 10 (3), p.  31, 1988. Although not listed in this journal's table of contents and without a doi, this article can be found at the end of the unrelated article by داڕێژە:بیرخستنەوەی ژوورناڵ
  13. داڕێژە:بیرخستنەوەی وێب
  14. داڕێژە:بیرخستنەوەی کتێب
  15. Euclid's Elements, Book I, Proposition 48 From D.E. Joyce's web page at Clark University
  16. Jon Orwant; Jarkko Hietaniemi; John Macdonald (1999). "Euclidean distance". Mastering algorithms with Perl. O'Reilly Media, Inc. p. 426. ISBN 1-56592-398-7.
  17. Carl B. Boyer, A history of mathematics, page 50, 1991